
Canyon Lake East Bay Sedimentation Characterization

9444 Farnham Suite 300 San Diego, California 92123 858.712.8400

CANYON LAKE EAST BAY SEDIMENTATION CHARACTERIZATION STUDY

Prepared for:

Lake Elsinore and San Jacinto Watersheds Authority 11615 Sterling Avenue Riverside, California 92503

Prepared by:

August 2002

TABLE OF CONTENTS

LIST OF TABLES LIST OF FIGURES

1.0	INTRO	ODUCTION	1-1
	1.1	PROJECT LOCATION	1-1
	1.2	SEDIMENT CHARACTERIZATION PROGRAM DESCRIPTION	1-1
2.0	CURR	ENT LAKE CHARACTERISTICS	2-1
	2.1	EXISTING CONDITIONS - EAST BAY	2-1
	2.2	IN-LAKE EAST BAY CHARACTERISTICS	2-1
3.0	SEDIN	MENT SAMPLING METHODS AND FINDINGS	3-1
	3.1	SEDIMENT SAMPLING METHODS / LOCATION	3-1
		3.1.1 EAST BAY SEDIMENT COMPOSITION	3-5
		3.1.2 EAST BAY SEDIMENT CHEMICAL COMPOSITION	3-5
	3.2	EAST BAY SEDIMENT SURFACE TOPOGRAPHY	3-5
	3.3	EAST BAY BATHEMETRY	3-6
	3.4	EAST BAY SEDIMENT VOLUME CALCULATION	3-10
4.0	RECO	MMENDATIONS	4-1
	4.1	ADDITIONAL TESTING RECOMMENDATIONS	4-1
5.0	REFE	RENCES	5-1

APPENDICIES

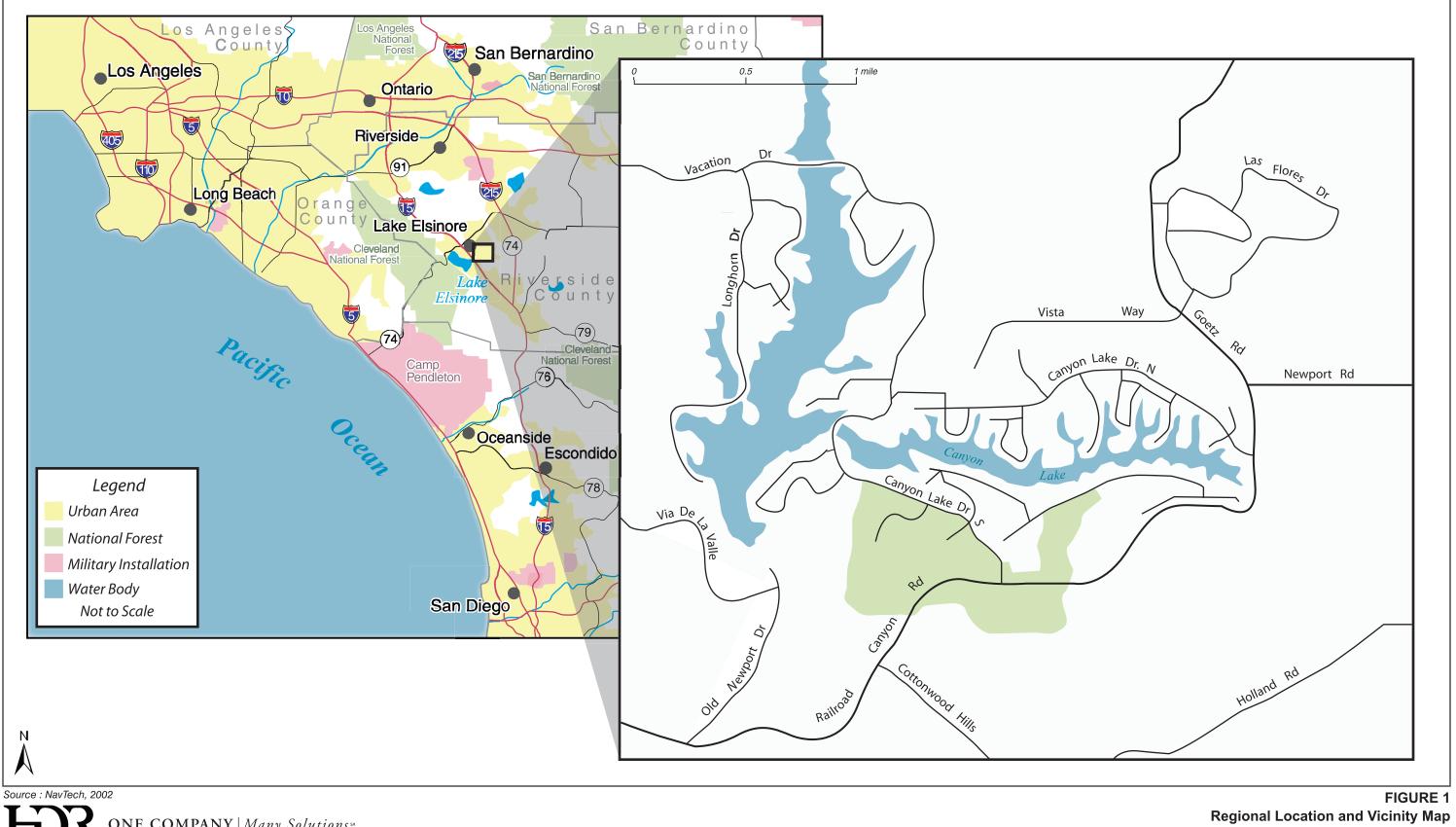
APPENDIX A	CORE LOGS
APPENDIX B	CORE PHOTOGRAPHS
APPENDIX C	LAB RESULTS
APPENDIX D	SITE PHOTOGRAPHY

LIST OF TABLES / FIGURES

Table 1	Core Sample Depths	3-5
Table 2	Phosphorous Results	3-6
Table 3	Other Analytical Results	3-7

Figure 1	Project Regional Location and Vicinity Map	1-2
Figure 2	In-Lake Sediment Core Sampling Locations	
Figure 3	Canyon Lake Bathymetric Model and Study Area	3-3
Figure 4	Vibracoring Photos	3-4
Figure 5	Canyon Lake East Bay Sediment Topography	3-9
Figure 6	Original Railroad Canyon Topographic Configuration	3-10
Figure 7	Canyon Lake East Bay Lakebed Bathymetry	3-11
Figure 8	Canyon Lake Sediment Profiles	3-12

1.0 INTRODUCTION


1.1 **PROJECT LOCATION**

Canyon Lake (Railroad Canyon Reservoir) lies approximately 75 miles southeast of Los Angeles and approximately 30 miles south of the City of Riverside, California. Canyon Lake is a manmade reservoir situated between granitic mountains in southwest Riverside County and is located within the City of Canyon Lake between I-215 and I-15 within the 735 square mile San Jacinto River watershed (see Figure 1 and Appendix D). Canyon Lake was created in 1927 with the construction of Railroad Canyon Dam due to the demand for water in the region. Currently Canyon Lake encompasses a total of 472 acres with 14.9 miles of shoreline (water elevation – 1376').

The valley surrounding Canyon Lake is bordered on the south and west by the Santa Ana Mountains and the Cleveland National Forest and on the north and east by foothills of the San Jacinto Mountains. Canyon Lake is located at the confluence of the San Jacinto River and Salt Creek. The water storage capacity of the lake is approximately 11,000 acre-feet at an elevation of 1,380 feet. Elsinore Valley Municipal Water District (EVMWD) is responsible for monitoring the water levels, the use and quality of the water resources of Canyon Lake. Contract agreements between the water district and the property owners' association allow for a minimum water elevation of 1,372 feet, the spill elevation is 1,381.76 feet.

1.1 SEDIMENT CHARACTERIZATION PROGRAM DESCRIPTION

The Canyon Lake East Bay sediment characterization has been prepared to determine the amount of sediment contained within the East Bay portion of Canyon Lake and to determine if the sediment contains any chemical constituents, which may constrain potential disposal options. The results (sediment volume and chemical characteristics) of this study will be utilized to quantify the details of the proposed sediment removal project for use in the Environmental Impact Report (EIR) currently

H) K ONE COMPANY | Many Solutions*

Canyon Lake East Bay Sediment Characterization Lake Elsinore and San Jacinto Watersheds Authority being prepared for the Canyon Lake In-Lake Treatment Program and future sediment removal and disposal cost estimates.

This sediment volume and chemical constituent data will be evaluated along with other East Bay sediment and water quality studies prepared to date to determine the final approach to sediment removal and water quality enhancement.

East Bay sediment loading is primarily derived from inflows of stormwater in Salt Creek and to a lesser degree from localized erosions from areas tributary to the East Bay.

This section provides a detailed description of the hydrogeologic characteristics of Canyon Lake.

2.1 EXISTING CONDITIONS – EAST BAY

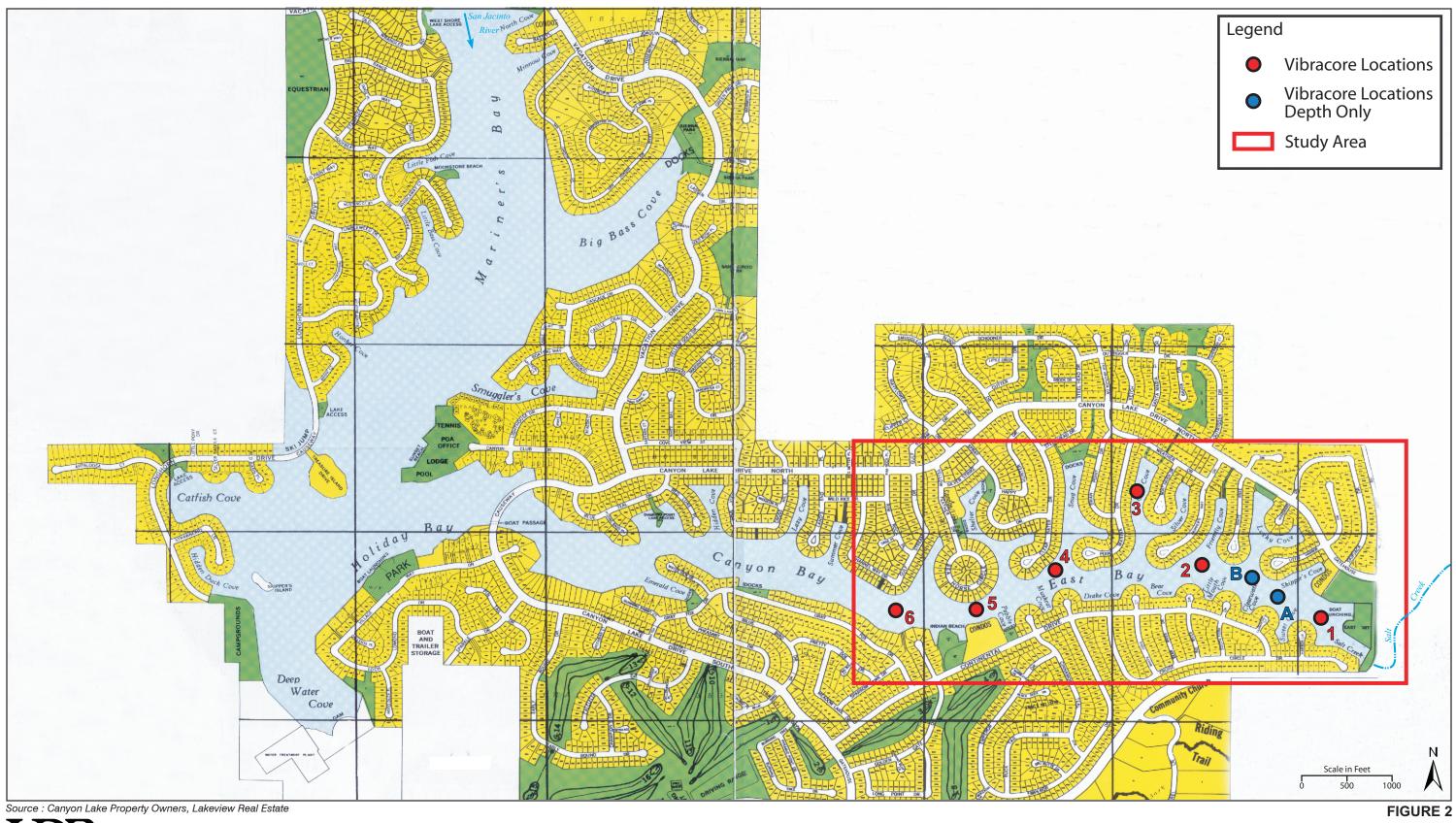
Canyon Lake is situated upstream of, and on the main inflow into Lake Elsinore. Since dam construction in 1927, Canyon Lake has acted as an interceptor for sediments, containing phosphorus and other nutrients, heavy metals and other constituents that would otherwise flow into Lake Elsinore from the greater San Jacinto River watershed. The average annual sediment loading to the lake is estimated at 17,000 cubic yards (CY), with minimum average annual phosphorus loading of 17 tons per year (Horne, 2002).

Although Canyon Lake can currently be classified as morphometrically mesotrophic, it is showing signs of eutrophication due to the high sediment loading and internal mixing. The high levels of nutrient loading, including phosphorus, have contributed to increased algae growth in the lake. This algae sinks to the bottom of the lake where it decays and consumes the available dissolved oxygen in the deep water. The water depths in the deeper portions of the lake, allows permanent summer thermal stratification, essentially trapping the algae in the deep water where it consumes the dissolved oxygen. This results in water quality issues including higher treatment costs for the deep water, which is used for drinking water. Other drinking water quality issues are associated with the presence of soluble iron and manganese, high pH and turbidity, taste and odor and possible blue-green algal toxicity. In addition, the high sediment accumulation in the shallow East Bay has interfered with boating, and contributes to hydrogen sulfide odors and submerged weed growth (Horne, 2002).

2.2 IN-LAKE EAST BAY CHARACTERISTICS

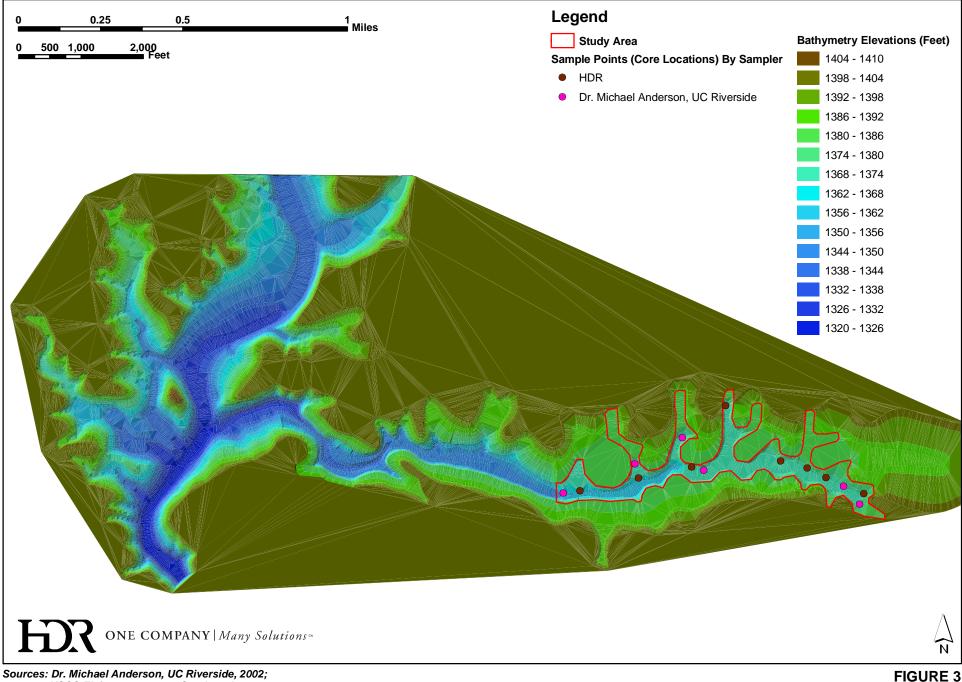
Since 1927, it is estimated that Canyon Lake has intercepted a large amount of sediment from the greater San Jacinto River watershed. Although the exact amount of sediment trapped in Canyon Lake is not known, at the current time, average annual sediment loading to the lake is estimated at

17,000 CY (2 to 3 inches per year of deposition per year), which is over 60 times the rate for a normal lake (Horne, 2002). This sedimentation has contributed to a loss of overall reservoir storage capacity, an increase in the total nutrient levels (including phosphorus) in the lakebed sediments, a decrease in overall water quality of the lake, and a reduction in the recreational use of the lake due to the raising of the lake bed.


The East Bay has been the site of substantial sediment deposition. Sediment accumulation in the East Bay dates back to 1969, therefore, there are only 33 years of sediment accumulation. Actual water volume has varied by as much as 6' throughout the last 18 months, because of this, low water depth measurements range from 1' to 5'6", which is still substantially lower than measurements in the 9' range ten years ago. Estimates indicate that more than 500,000 CY of sediment have been deposited into the East Bay (Horne, 2002).

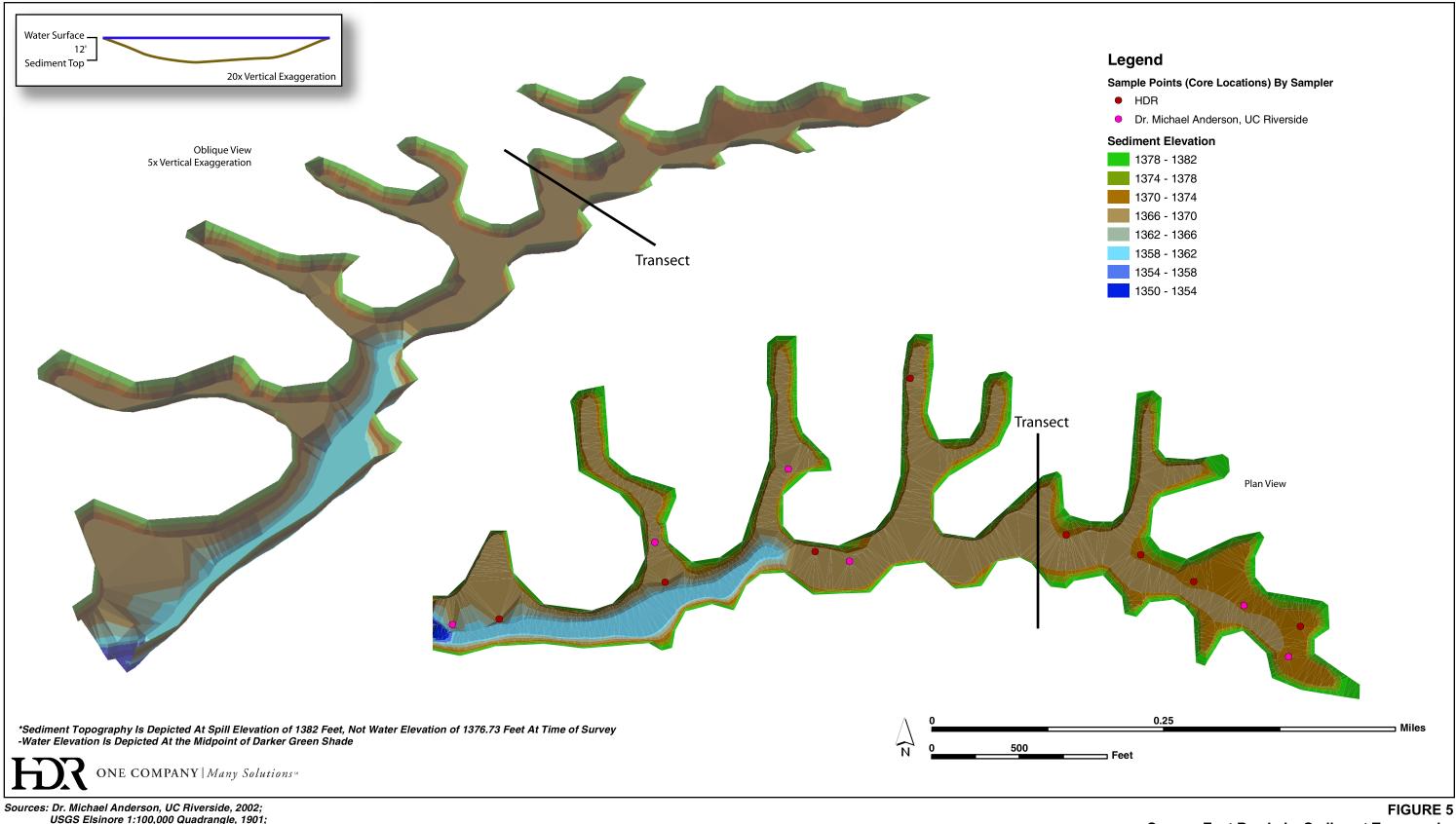
3.1 SEDIMENT SAMPLING METHODS/LOCATIONS

HDR conducted a preliminary assessment of the East Bay of Canyon Lake on May 29, 2002. The purpose of this subsurface assessment was to identify the basic sediment composition within the lake as well as the type and quantity of the sediment. This data will be used for potential future sediment removal operatives.


Core samples were collected at six areas (Figure 2) through the entire width of accumulated sediment. The coring locations (Core #1 through Core #6) were selected prior to drilling activities, but were slightly adjusted due to measured water depths. Core #1 was located the furthest east and core #6 was located the furthest west within the East Bay. The areas for coring were located in areas representing significant sediment accumulation as identified by the Lake Elsinore & San Jacinto Watersheds Authority (LESJWA) and the City of Canyon Lake. Two additional cores were taken at the east end of the study area (Cores A & B), the materials from these cores were measured for depths (3'3" and 3'8") and then discarded. The total study area of the in-lake sedimentation analysis covers approximately 65 acres of open water and shoreline in the East Bay of Canyon Lake (Figure 3).

On May 29, 2002, core samples were obtained at each location utilizing the vibacore methodology. During this innovative procedure, dedicated 2-inch diameter aluminum core barrels were vibrated into the lake bottom until refusal at each site (Figure 4). Core barrel penetration is greatest within water-saturated sediments such as sand and silt. Consolidated sediments, such as clay or rock, restrict the core barrel from penetrating and may be used as a plug for retaining sediment within the core barrel. As anticipated, the natural base of the fluvial system at Canyon Lake consists of clay and was used as a plug. The excess core barrel above the water line was cut off using a hacksaw and retained for later disposal. The top of each core barrel was filled with water, capped, and winched out of the bottom of the lake by a floating platform, tripod, and hand winch. Recovery at each site was noted, and each core was measured, labeled, and capped in the field after collection.

In-Lake Sediment Core Sampling Locations Canyon Lake East Bay Sediment Characterization Lake Elsinore and San Jacinto Watersheds Authority



Sources: Dr. Michael Anderson, UC Riverside, 2002; USGS Elsinore 1:100,000 Quadrangle, 1901; USGS 1:24,000 Wildomar Quadrangle; W.P. Rowe, Railroad Canyon Survey, 1920 FIGURE 3 Canyon Lake Bathymetry & Study Area Canyon Lake East Bay Sediment Characterization Lake Elsinore and San Jacinto Watersheds Authority

Source : Field Survey; May 29, 2002 ONE COMPANY | Many Solutions **

FIGURE 4 Vibracoring Photos Canyon Lake East Bay Sediment Characterization Lake Elsinore and San Jacinto Watersheds Authority

USGS Elsinore 1:100,000 Quadrangle, 1901; USGS 1:24,000 Wildomar Quadrangle; W.P. Rowe, Railroad Canyon Survey, 1920

1378 -	1382
1374 -	1378

Canyon East Bay Lake Sediment Topography Canyon Lake East Bay Sediment Characterization Lake Elsinore and San Jacinto Watersheds Authority

3.1.1 EAST BAY SEDIMENT COMPOSITION

On June 1, 2002 collected cores were opened, geologically logged and submitted for laboratory analysis. The core depths varied from 2'4" to 5'7" (Table 3-1). All cores were logged according to soil classification system-ASTM D2487. The geologist determined sample intervals within each core and collected individual samples (Appendix A and B).

Core Sample	Water Depth (depth to top of sediment) (inches/feet)	Core Depth (inches/feet)	Sediment Thickness (inches/feet)
1	67" / 5' 7"	54" / 4' 6"	43" / 3' 7"
2	72" / 6'	67" / 5' 7"	43" / 3' 7"
3	118" / 9' 10"	55" / 4' 7"	42" / 3' 6"
4	84" / 7'	49" / 4' 1"	30" / 2' 6"
5	83" / 6' 11"	28" / 2' 4"	20" / 1' 8"
6	97" / 8' 1"	37" / 3' 1"	21" / 1' 9"
А	72" / 6'	39" / 3' 3"	39" / 3' 3"
В	72" / 6'	44" / 3' 8"	44" / 3' 8"

Table 1 Core Sample Depths

3.1.2 EAST BAY SEDIMENT CHEMICAL COMPOSITION

Sediment accumulated at the six coring sites consists of approximately 1'8" to 3'8' of organic-rich dark gray mud above grayish-brown sandy clay. The mud is soft and unconsolidated. The sandy clay is very compacted, restricting further penetration of the core barrel, and acting as a plug. Composite samples were obtained from each core and analyzed by American Environmental Testing Laboratory for California Administrative Manual (CAM) 17 Metals and total phosphorus. Based upon the analytical results, additional analysis may be required of archived samples. None of the 17 CAM metals that were tested for exceeded the State of California limits and sediment disposal options are not constrained.

Generally, there is minimal detectable soluble phosphorus in the sediment cores, which could contribute to algae growth in the lake. The low levels indicate that soluble phosphorus in the sediments may have gone into solution into the lake water. Earlier studies (Anderson, 2002 and Horne, 2002) indicate very similar results despite using a lower detection limit for soluble phosphorus. The collective results suggest further testing may be required should raw material be dredged from the lake. A nitrogen, phosphorus, and potassium (NPK) test on the dredged material may indicate more accurate soluble and insoluble phosphorus loads. This test may be required under federal or California regulations in order for the dredged material to be used for land applications such as a soil or fertilizer amendments or prior to transportation and disposal. Tables 2 and 3 list results of analysis and detailed results are included in Appendix C.

Table 2 Phosphorus Results

	American Environmental Testing Laboratory Results	Dr. Anderson of UC - Riverside Results*		
Core Sample	Phosphorus (total) (mg/kg)	Porewater SRP (mg/l)	Phosphorus (total) (mg/kg)	
1	ND	0.194	720.2	
2	ND	0.274	353.7	
3	ND	0.034	627.3	
4	ND	0.058	493.3	
5 ND		0.019	426.2	
6	ND	0.035	492.9	
AVERAGE	N/A	0.102	518.9	

* ND – Not Detectable

* Dr. Michael A. Anderson, Department of Environmental Sciences, University of California, Riverside

Analytes (CA Limit)	Core 1	Core 2	Core 3	Core 4	Core 5	Core 6
Antimony (500)	ND	ND	ND	ND	ND	ND
Arsenic (500)	ND	ND	ND	ND	ND	ND
Barium (10,000)	92.5	85.0	141.0	186.0	123.0	112.0
Beryllium (75)	ND	ND	ND	ND	ND	ND
Cadmium (100)	ND	ND	ND	ND	ND	ND
Chromium (500)	7.7	6.2	16.1	11.6	8.4	24.8
Cobalt (8,000)	4.1J	3.5J	9.1	7.0	4.6J	9.4
Copper (2,500)	12.1	0.4	23.4	12.7	12.7	20.3
Lead (1,000)	ND	ND	12.2	5.8	4.8J	6.0
Mercury [by EPA 7471] (20)	ND	ND	ND	ND	ND	ND
Molybdenum (3,500)	ND	ND	ND	ND	ND	ND
Nickel (2,000)	3.1J	2.8J	7.4	5.8	6.3	7.9
Selenium (100)	ND	ND	ND	ND	ND	ND
Silver (500)	ND	ND	ND	ND	ND	ND
Thallium (700)	ND	ND	ND	ND	ND	ND
Vanadium (2,400)	24.2	20.0	51.5	30.3	40.3	63.0
Zinc (5,000)	25.3	20.5	57.5	32.1	28.1	41.0

Table 3Analytical Results (mg/Kg)

*ND – Not Detectable

3.2 EAST BAY SEDIMENT SURFACE TOPOGRAPHY

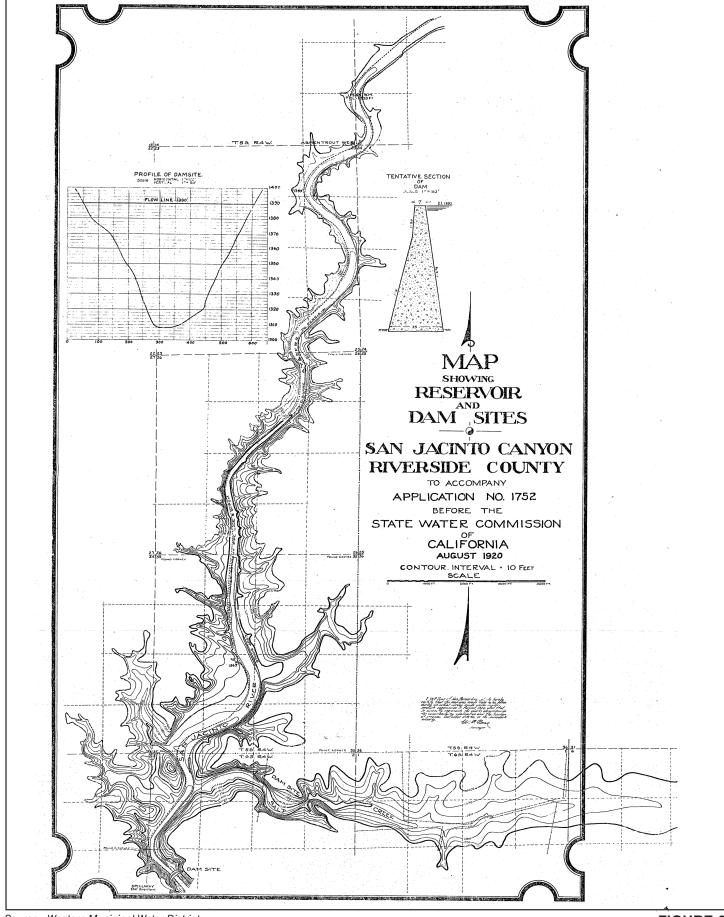
The model of the sediment top surface was created from the coring depths collected from the field survey conducted on May 29, 2002. Sampled water depths in Canyon Lake's East Bay range from 5'7" to 9'10", and average 8' (water elevation 1,376'). The volume of water at this elevation over the 65 acre study area is 620,000 cubic yards or 385 acre-feet of water. Additional depths from a similar study by Dr. Michael Anderson at the University of California Riverside were included in the development of the model to increase precision and accuracy. These additional points did not factor into the sediment depth calculations directly, rather they contributed to the creation of the sediment bathymetry model. The data collected from the core samples was used to interpolate a Triangular Irregular Network (TIN). The TIN surface is illustrated graphically as well as a component in the calculations of sediment volume.

The lake sediment topography within the East Bay of Canyon Lake is a gradual incline slope with greater depths in the eastern third and within the northerly coves (Figure 5). Sediment depths in those areas averaged 3'6" versus 2' in the western portions of the East Bay, this is most likely due to decreased velocities of water flow and lesser slopes of the lakebed bathymetry. The average

sediment depth derived from the sediment topography model across the 65 acres of the East Bay is 2'2"*. Sediment composition consisted of an organic rich, dark gray, mud above a grayish brown sandy clay.*

3.3 EAST BAY BATHYMETRY

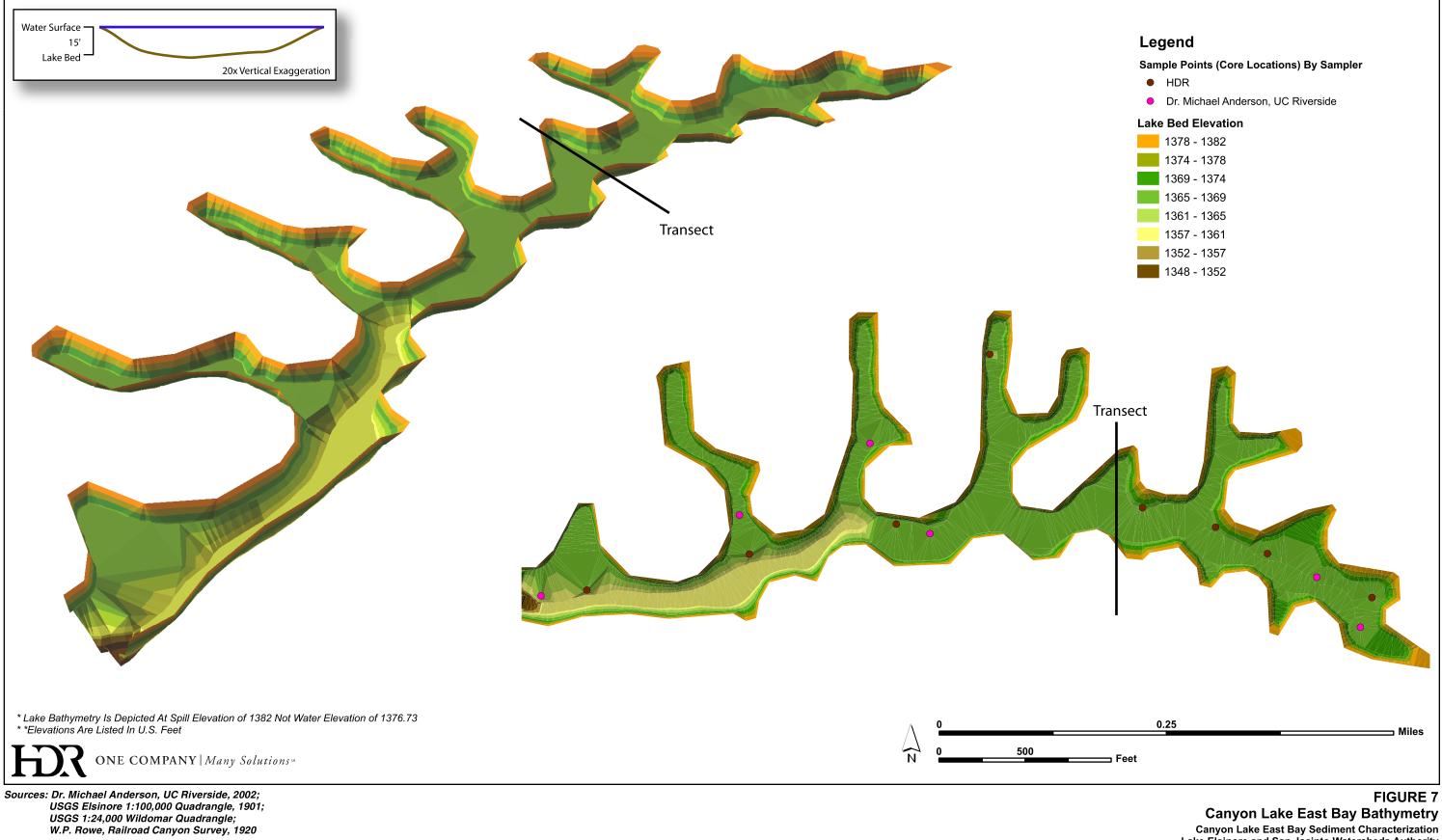
Several reference materials were acquired in order to identify an accurate Canyon Lake lakebed configuration; 1901 USGS 1:100,000 Elsinore Quadrangle and the original pre-1920 survey topography (Figure 6) that was acquired from Western Municipal Water District. In order to develop bathymetric data for Canyon Lake survey contours from the pre-1920 dam plans and the 1901 Quad were digitized and georeferenced to the existing 1,400 foot contour from the 1979 USGS 7.5 minute 1:24,000 Wildomar Quadrangle. After evaluating elevation data developed from sediment cores, it was apparent that during development of the City of Canyon Lake or the construction of the reservoir the topographic configuration changed considerably. This change was due to dredging, grading, and other natural events.


The lake bottom topography of Canyon Lake is described as a gradual incline sloped basin with intermingled steeper shelves (Figure 7). The lakebed bathymetry was created by subtracting a thickness of sediment estimated from the six core samples collected during the core sediment sampling on May 29, 2002. Over 1,400 data points were extracted from the sediment topography TIN and given a new elevation based on a nearest-neighbor interpolation from the cores. The resulting new lattice was used to create a TIN for the approximate location and depth of the lake bottom.

3.4 EAST BAY SEDIMENT VOLUME CALCULATION

The East Bay contains moderate amounts of sediments from erosion and stormwater runoff. The approximate total volume of sediments within the East Bay analysis area is 225,000cy (60,703 m³) or 140 acre feet. The sediment volume is a result of taking the difference from the two TIN volumes (surface to sediment top and surface to lake bottom) calculated from the waters surface (Figure 8). All modeling elevations were normalized to the spill elevation of 1,382 feet rather than

^{*} This average core sample sediment depth is 2'11". When depths are applied to the sediment topography and lakebed bathymetry models and computed using a nearest neighbor analysis the average for the entire 65 acre study area decreases to 2'2".


the water elevation during sampling of 1,376 feet, however, sediment calculations were done using the water elevation as the volume limiting plane. This was done in order to accommodate the use of existing elevation data available through the USGS and existing GIS databases, while maintaining the integrity of the field survey data.

Source : Western Municipal Water District

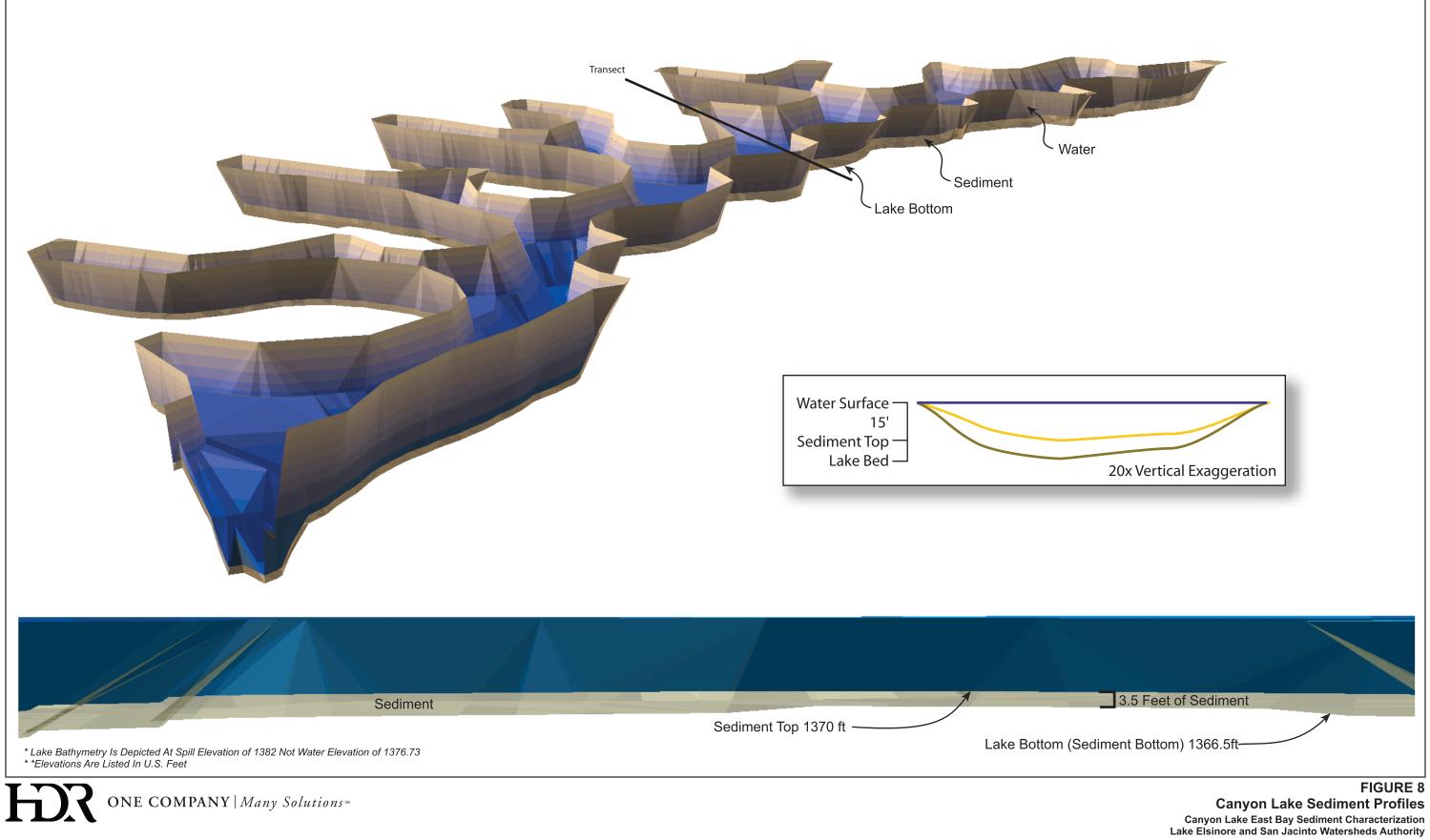

ONE COMPANY | Many Solutions**

FIGURE 6 1920 Railroad Canyon Topographical Survey Canyon Lake East Bay Sediment Characterization Lake Elsinore and San Jacinto Watersheds Authority

1378 - 1382
1374 - 1378
1369 - 1374
1365 - 1369
1361 - 1365
1357 - 1361
1352 - 1357
12/0 1252

Canyon Lake East Bay Bathymetry Canyon Lake East Bay Sediment Characterization Lake Elsinore and San Jacinto Watersheds Authority

4.0 **RECOMMENDATIONS**

In order to ensure a comprehensive analysis of the East Bay sediments, and their relationship to the water quality characteristics of Canyon Lake, it is recommended that the following items be addressed:

- Conduct additional coring in the East Bay, closer to the causeway to determine a more accurate and complete estimate of sediments in the entire East Bay.
- Conduct a water depth survey using established sampling points based upon a 100-foot grid pattern to obtain an accurate sediment layer profile and water depths for the East Bay.

5.0 **REFERENCES**

- Anderson, Michael A. 2000. Internal Loading and Nutrient Cycling in Canyon Lake, 1 Quarterly Report. Submitted to the Santa Ana Regional Water Quality Control Board. Riverside, California.
- Anderson, Michael A. 2002. Internal Loading and Nutrient Cycling in Canyon Lake, 2nd Quarterly Report. Submitted to the Santa Ana Regional Water Quality Control Board. Riverside, California.
- Barnard, W.D. 1978. Prediction and Control of Dredged Material Dispersion Around Dredging and Open Water Pipeline Disposal Operations. Technical Report for the United States Army Corps of Engineers (DS-78-13). Vicksburg, Massachusetts.
- Bishop, William M. 1984. Phase I Report The Restoration of Lake Ella. Final Report for the City of Tallahassee. Consulting Engineers, Inc. Tallahassee, Florida.
- Cooke, G.D., E.B. Welch, S.A. Peterson, and P.R. Newroth. 1993. Restoration and Management of Lakes and Reservoirs. Lewis Publishers and CRC Press. Boca Raton, Florida.
- HDR Engineering, Inc. 2002. Lindo Lake Park Restoration Project In-Lake Characterization Study and Conceptual Restoration Plan. Prepared for the County of San Diego, Department of Public Works, Environmental Services Unit. San Diego, California.
- Horne. 2002. Restoration of Canyon Lake and Benefits to Lake Elsinore Downstream.
- North American Lake Management Society. 1990. Lake and Reservoir Restoration Guidance Manual 2nd Edition. Prepared for the U.S. Environmental Protection Agency, Office of Water. Washington, D.C.

APPENDIX A

CORE LOG

ORE ID: CORE 1 ECOVERY: 4' 6"	CORE DATE: 29 MAY 02 WATER DEPTH: 5' 7"	TIME: 0935 HOURS	LOG DATE: 01 JUNE 02
SAMPLE INTERVAL	SOIL PROFILE	ASTM SYMBOL	DESCRIPTION
			Dark gray mud, very soft, wet, organic rich, no sand content
0-43"		OH	
			Light brown (tan) sandy clay, moist, tight, trace coarse sand
43" - 54"		CL	
ORE ID: CORE 2 ECOVERY: 5' 7"	CORE DATE: 29 MAY 02 WATER DEPTH: 6'	TIME: 1037 HOURS	LOG DATE: 01 JUNE 02
SAMPLE INTERVAL	SOIL PROFILE	ASTM SYMBOL	DESCRIPTION
	SOILTROTTLE	Norm ormboli	Dark gray mud, very soft, wet, organic rich, no sand content
			- an gul mu,,,,,
0.421		011	
0-43"		OH	
	_		
			Brown sandy clay, tight, moist, gravel at 49"
43" - 56"		CL	
			Dark gray sand, poorly graded, moist, trace coarse sand/clay
56" - 67"		SP	Dark gray sand, poorly graded, moist, trace coarse sand/ clay
50 - 01		01	
ORE ID: CORE 3	CORE DATE: 29 MAY 02	TIME: 1137 HOURS	LOG DATE: 01 JUNE 02
ECOVERY: 4' 7"	WATER DEPTH: 9' 10"		
SAMPLE INTERVAL	SOIL PROFILE	ASTM SYMBOL	DESCRIPTION
			Dark gray mud, very soft, wet, organic rich, no sand content
0 - 42"		OH	
			Light green sandy clay, moist
42" - 47"		CL	
	_		The ball and the state of the second se
47" - 55"		CL	Light brown sandy clay, moist, tight, trace coarse sand
47 - 55		CL CL	
ORE ID: CORE 4	CORE DATE: 29 MAY 02	TIME: 1217 HOURS	LOG DATE: 01 JUNE 02
ECOVERY: 4' 1"	WATER DEPTH: 7'		
SAMPLE INTERVAL	SOIL PROFILE	ASTM SYMBOL	DESCRIPTION
			Dark gray mud, very soft, wet, organic rich, no sand content 0 - 27", 27 - 30" trace sand
0.001			
0 - 30"		OH	
30" - 35"		CL	Dark gray clay, moist, tight, trace fine sand, gravel at 34"
00 00			Reddish-brown sandy clay, moist, soft
35" - 49"		CL	
ORE ID CORE 5	CORE D 1772 AC		
DRE ID: CORE 5 ECOVERY: 2' 4"	CORE DATE: 29 MAY 02 WATER DEPTH: 6' 11"	TIME: 1305 HOURS	LOG DATE: 01 JUNE 02
SAMPLE INTERVAL	SOIL PROFILE	ASTM SYMBOL	DESCRIPTION
COMPANY DE TRATÉRYAL	JOILTROFILL	ACTIN CIMPOL	Dark gray mud, very soft, wet, organic rich, 7.5-10.5" brown clayey sand, wet, gravel at 8
0 - 20"		OH	gravish green clayey sand, wet, trace gravel
0 - 20		OH	
			Gravish green clayey sand, wet, trace gravel
		SC	
20" - 25"			Gray clay, moist, tight, trace fine sand
20" - 25" 25" - 28"		CL	Only clay, most, agin, thee the sand
25" - 28"			
25" - 28" DRE ID: CORE 6	CORE DATE: 29 MAY 02	CL TIME: 1345 HOURS	LOG DATE: 01 JUNE 02
25" - 28" DRE ID: CORE 6 ECOVERY: 3' 1"	WATER DEPTH: 8' 1"	TIME: 1345 HOURS	LOG DATE: 01 JUNE 02
25" - 28" DRE ID: CORE 6			LOG DATE: 01 JUNE 02 DESCRIPTION
25" - 28" DRE ID: CORE 6 ECOVERY: 3' 1" SAMPLE INTERVAL	WATER DEPTH: 8' 1"	TIME: 1345 HOURS ASTM SYMBOL	LOG DATE: 01 JUNE 02
25" - 28" ORE ID: CORE 6 ECOVERY: 3' 1"	WATER DEPTH: 8' 1"	TIME: 1345 HOURS	LOG DATE: 01 JUNE 02 DESCRIPTION
25" - 28" ORE ID: CORE 6 ECOVERY: 3' 1" SAMPLE INTERVAL	WATER DEPTH: 8' 1"	TIME: 1345 HOURS ASTM SYMBOL	LOG DATE: 01 JUNE 02 DESCRIPTION
25" - 28" DRE ID: CORE 6 ECOVERY: 3' 1" SAMPLE INTERVAL 0 - 21"	WATER DEPTH: 8' 1"	TIME: 1345 HOURS ASTM SYMBOL OH	LOG DATE: 01 JUNE 02 DESCRIPTION
25" - 28" DRE ID: CORE 6 ECOVERY: 3' 1" SAMPLE INTERVAL 0 - 21" 21" - 24"	WATER DEPTH: 8' 1"	TIME: 1345 HOURS ASTM SYMBOL OH CL	LOG DATE: 01 JUNE 02 DESCRIPTION Dark gray mud, very soft, wet, organic rich, clay interval 14-17" Dark gray sandy clay, moist, soft, organic rich
25" - 28" DRE ID: CORE 6 ECOVERY: 3' 1" SAMPLE INTERVAL 0 - 21"	WATER DEPTH: 8' 1"	TIME: 1345 HOURS ASTM SYMBOL OH	LOG DATE: 01 JUNE 02 DESCRIPTION Dark gray mud, very soft, wet, organic rich, clay interval 14-17"
25" - 28" DRE ID: CORE 6 ECOVERY: 3' 1" SAMPLE INTERVAL 0 - 21" 21" - 24" 24" - 37" DOTNOTES FOR CORE LOG	WATER DEPTH: 8' 1" SOIL PROFILE RESULTS	TIME: 1345 HOURS ASTM SYMBOL OH CL	LOG DATE: 01 JUNE 02 DESCRIPTION Dark gray mud, very soft, wet, organic rich, clay interval 14-17" Dark gray sandy clay, moist, soft, organic rich Reddish-brown sandy clay, moist, soft ASTM SMMBOL

HDR ONE COMPANY | Many Solutions**

Appendix A Core Log Soil Profiles Canyon Lake East Bay Sediment Characterization Lake Elsinore and San Jacinto Watersheds Authority

APPENDIX B

CORE PHOTOGRAPHS

Source : NavTech, 2002

APPENDIX B Core Photos Canyon Lake East Bay Sediment Characterization Lake Elsinore and San Jacinto Watersheds Authority

APPENDIX C

LAB RESULTS

2834 North Naomi Street Burbank, CA 91504 • DOHS NO 1541 LACSD NO 10181 Tel (888) 288-AETL • (818) 845-8200 • Fax (818) 845-8840 • www aetlab com

Ordered By

ł

The Friday Start The	
	<u> </u>
9444 Farnham Street Suite 300_	
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
San Diego, CA 92123-	

Telephone: (858)712-8335 Attention: Jeff Thornbury

Mumber; of Pages 7
Date Received - 06/04/2002
Date Reported06/06/2002

Job Munbar	Order Date	Client
22101	06/04/2002	HDR

Project ID: CANYON LAKE Project Name: Canyon Lake Coring Project

> Enclosed please find results of analyses of 6 soil samples which were analyzed as specified on the attached chain of custody If there are any questions, please do not hesitate to call

Checked By

a.

Approved By

10

Cyrus Razmara, Ph D Laboratory Director

Am	American Environmental Testing Laboratory Inc	VILOUI	cental	Testing	Labor	atory Inc				CHAIN O	F CUS	CHAIN OF CUSTODY RECORD	
2834 N Tel (8	2834 North Naom Street Burbank, CA 91504 DOHS NO-154 Tel (888) 286-AIETL。 (818) 845-8200 • Fax (818) 845-8840	el Burbank, (818) 845	CA 91504 -8200 • Fait	1 (818) 545	0- 1541 LA -8840	DOHS NO- 1541 LACSD NO- 10181 (318) 845-8840					-		
COMPANY	ADR	613	Engyleeria	رد ج	Р	PHOMEBER) 712 - 2353	2353	AETLJOB No	8 No	22101	/	Page / of /	
PROJECT MANAGER	Andres	<i>کر ا</i> کر	Herlaun	1 101	T-d-		- 6333	Ľ	ANALYSIS	IS REQUESTED		TEST INSTRUCTIONS & COMMENTS	NTS
	201702		ake	Coring	- HOUE	A Preset		ولود م مردمة م					
SITE NAME AND										••••••			
ADDRESS								yø Ivf,			~		
SAMPLE ID	LAB ID		DATE	TIME	MATRIX	CONTAINER NUMBER/SIZE	PRES	144 17 [1		·			
52 #1	AEILO 217	3	11/22	1400	S	4	1	× ×				* Acak rtain	
2#2		¥ ا	1020	1420	N	4	1	XX					
20 F # 3			102	1430	s	4	1	××				future analysis	_
Core # 4	AE 116220		1/02	1440	۲	8	(× ×					
Toke the S	HE 114221	1	202	25%/	ч	¢	1	× ×		_			-
2. re #6	_	2	11/02	1500	S	\$	1	× ×					
	-	-											
													T
													T
													T
													Τ
													Τ
								_					
SAMPLI	SAMPLE RECEIPT	- TO BE	HLLED	BY LAB	- TO BE FILLED BY LABORATORY		RELINQUISHED BY	4	-	RELINQUISHED BY	~ (RELINQUISHED BY 3	
TOTAL NUMBER OF CONTAINERS	MAINERS	24	PROPERL	PROPERLY COOLED	AN / NA	A LANG			-	Signature.		Signettore	
CUSTODY SEALS Y/M/	Ś		SAMPLES	SANPLES INTACT	N / NA	And.	Pen C	-frefigures	7	d Mcrack		(Nenta	T
RECEIVED IN GOOD COND	N Q UN		SAMPLES	SAMPLES ACCEPTED (V) N	₹ C) ¤	Caller Coller	6/3/0 2	735	200		Tizne	Deter	
	ř	TURN AROUND TIME	UND TIMI	ш		HEC	erved By	-	7	received by	~1/	RECEIVED BY LABORATORY	
			L				and .	\mathbb{N}		Signaturec		CI UNCLU STATE	
NORMAL		I RUSH		LI SAME DAY		HRS HRS	Printed Mains			Principal Nanta.		t	
بور در این اور						N						6-4-02 810	
the second s	The set of the set of the set of the set	The second s	and the second	COLORADO AND	And and the second second second								

-

- - -

2

j

Ĵ

12

-

DISTRIBUTION WHITE - Laboratory, CANARY Laboratory, PINK - Project/Account Manager, YELLOW - Sampler/Originator

American Environmental Testing Laboratory Inc

2834 North Nuomi Street Burbank. CA 91504 • DOHS NO 1541 LACSD NO 10181 Tel (888) 288-AETL • (818) 845-8200 • Fax. (818) 845-8840 • www aetlab com

ANALYTICAL RESULTS

HDR Engineering, Inc	1						
9444 Farnham Street	* * .	1					
Suite 300		1					
San Diego, CA 92123-		لم					
Telephone (858)712-8335							
Attn Jeff Thornbury							
Page 2							
Project ID CANYON LAK	F <u>`</u>			ETL JOB N	umber Su	bmitted	Clien
	e Coring Pro	lect		22101		5/04/2002	HDR
						5/04/2002	LIDR
Me	thod (6010/70))0CAM), (CAM Title 22	2 Metals (S)	W-846)		
QC B	atch No 06042002-	1 QC Prepare	ed 06/04/2002	QC Analyzed	06/04/2002		
	······					1	1 V martin
Our Lab LD.				AE116217	And and a second se		AE1162
Client Sample I D			Method Blank		Core #2	Core #3	Core #4
Date Sampled		ļ. <u>.</u>	06/04/2002		05/01/2002	1	06/01/200
Date Prepared			30508	3050B	3050B	3050B	06/04/200 3050B
Preparation Method Date Analyzed					06/04/2002	1	05/04/200
Matrix		<u> </u>	Soil	Soil	Soil	Soul	Soul
Units		<u> </u>	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Dilution Factor		<u> </u>	1	1	1	1	1
Analytes	MDL	PQL,	Results	Results	Results	Results	Result
Апитопу	50	10 0	ND	ND	CIA	ND	NO
Arsenic	5 0	10 0	ND	ND	ND	NTD	ND
Banum	2 5	50	NO	92 5	85 0	141	186
Beryilium	13	2 5	ND	ND	ND	ND	ND
Cadmum	1 3	2 5	ND	ND	ND	ND	ND
Chromum	2 5	50	ND	77	62	16.1	11 6
Cobalt	2 5	50	ND	4 13	355	91	70
Copper	2 5	50	ND	12 1	84	23 4	12 7
Lead	2 5	50	ND	ND	ND	12 2	58
Mercury (By EPA 7471)	01	0 2	ND	ND	ND	ND	סא
Molybdenum	2 5	50	ND	ND	ND	ND	NTD
Nickel	2 5	50	ND	3 15	2 85	74	58
Seienlum	5 0	10 0	ND	ND	MD	MD	ND
Silver	2 5	50	ND	ND	ND	ND	ND
	50	10 0	ND	ND	ND	MD	ND
Thallum		÷		-		+	-
Thallium Vanadium	2 5	50	ND	24 2	20 0	51 5	30 3

American Environmental Testing Laboratory Inc.

2834 North Naomi Street Burbank, CA 91504 . DOHS NO 1541 LACSD NO 10181 Tel (888) 288-AETL • (818) 845-8200 • Fax (818) 845-8840 • www aetlab com

ANALYTICAL RESULTS

HDR Engineering, Inc 9444 Farnham Street Suite 300 San Diego, CA 92123- Telephone (858)712-8335 Attn Jeff Thornbury Page 3 Project ID CANYON LAKE AETL Job Number Submitted Client	Ordered By								
9444 Fanhan Street Shita 300 San Diego CA 92123- Telephone (658)712-8335 Atm Jeff Thombury Page 3 Project ID CANYON LAKE Project ID CANYON LAKE Project Name Canyon Lake Coring Froject Method (6010/7000CAM), CAM Title 22 Metals (SW-846) DC Batch No 0604202-1 GC Prepared 65042002 Our Lab ID AB116221 Chen Sample ID Care #5 Date Sampled 06/04/2002 Date Sampled 06/04/2002 Date Analyzed 06/04/2002 Mattx Soit Soit Soit Date Sampled 06/04/2002 Date Analyzed 06/04/2002 Mattx Soit Soit Soit Diluton Factor 1 Natalytës MD Politan 25 Soit Soit Soit Soit Date Sampled Core #6 Date Sampled Soit Date Sampled Soit Date Sampled Soi	HDR Engineering, Inc	** 7 107	······································						
Suita;300 San Diego, CA '92122- Telephone (658)712-8335 Att Jeff Thombury Page 3 Project ID CANYON LAKE Project ID CANYON LAKE Method (6010/7000CAM), CAM Title 22 Metals (SW-846) GC Batch No 06042002-1 GC Prepared 06/04/2002 Our Lab YD Care e5 Care e5 Care e5 Date Sampled 06/04/2002 Date Sampled 06/04/2002 Date Propared 06/04/2002 Date Analyzed 06/04/2002 Matrix Soil Soil Soil Dilution Factor 1 Antanony 10 0 Soil Soil Barlum 2 5 Barlum 2 5 Barlum 2 5 Soil Soil Choin Soil Soil Choin Soil Soil Soil Soil	9444 Farnham Street	-	,						
San Durgo, CA 92123- Telephone (658)712-8335 Attn Jeff Thormbury Page 3 Project ID CANYON LAKE Project Name Canyon Lake Coring Project Method (6010/7000CAM), CAM Title 22 Motals (SW-846) GC Batch No 06042002-1 GC Prepared 06042002 Our Lab 1D Core #5 Client Sample 1D Core #5 Date Sample 1 06/04/2002 Date Sample 1D Core #5 Date Sample 1D Core #5 Date Sample 1D Core #5 Date Analyzed 06/04/2002 Matrix Soil Date Sample 1 06/04/2002 Date Analyzed 06/04/2002 Matrix Soil Diluton Factor 1 Attimony 5 Soil Soil Diluton Factor 1 Soil Soil Soil 10 Bartum 2 5 Bar		L. *							
Telephone (858)712-8335 Atm Jeff Thornbury Page 3 Project D CANYON LAKE Project Name Canyon Lake Coring Project Method (6010/7000CAM), CAM Title 22 Metals (SW-846) aC Batch No 06042002 CA Analyzed 06042002 Our Lab J.D. - Client Sampled 06/04/2002 Date Sampled 06/02/2002 Date Sampled 06/04/2002 Dilution Factor 1 1 Anumony 50 10 no Anumony 50 10 no Anumony 25 50 123 11 Barluna 25 50 4 47 6 Chopper </td <td></td> <td>r ·</td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		r ·	•						
Atm Jeff Thombury Page 3 Project ID CANYON LAKE Project ID CANYON LAKE Project Name Canyon Lake Coring Project Method (6010/70000CAM), CAM Title 22 Metals (SW-846) 0C Batch No 060420021 GC Prepared 06/04/2002 GC Analyzed 06/04/2002 Our Lab LD		224	بربارية ايند						
Project ID Project Name CANYON LAKE Canyon Lake Coring Project AETL Job Number Submitted Client Method (6010/7000CAM), CAM Title 22 Metals (SW-846) GC Batch No 06042002-1 GC Prepared 06/04/2002 Octanalyzed 06/04/2002 Octanalyzed 06/04/2002 HDR Our Lab ID Clear Sample ID - - AETL 6221 AETL 6222 - - Date Sampled 06/01/2002 05/04/2002 Core #6 - - Date Sampled 06/04/2002 05/04/2002 05/04/2002 - - Date Analyzed 06/04/2002 05/04/2002 05/04/2002 - - Matrix Soil 05/04/2002 06/04/2002 - - - Matrix Soil -									
Notes Canyon Lake Coring Project 22101 06/04/2002 HDR Method (6010/7000CAM), CAM Title 22 Metals (SW-846) DC Batch No 06042002-1 QC Prepared 06/04/2002 QC Analyzed 06/04/2002 HDR Our Lab ID - - - AE116/221 AE116/220 CA Chent Sample ID -	•								
Method (6010/7000CAM), CAM Title 22 Metals (SW-846) QC Batch No 06042002-1 QC Prepared 06/04/2002 QC Analyzed 06/04/2002 Our Lab LD AE116221 AE116222 Citent Sample I D Core #5 Core #6 Date Sample I D 06/01/2002 06/01/2002 06/01/2002 Date Sample I D 06/04/2002 06/01/2002 06/01/2002 Date Sample I D 06/04/2002 06/04/2002 06/04/2002 Prepared 06/04/2002 06/04/2002 06/04/2002 Matrix Soil Soil Soil Units mg/Kg mg/Kg mg/Kg Diluton Factor 1 1 International Content of the second content of	2 2 4 3 4 4 6 2 5					•	1		Client
OC Batch No 66042002 C Prepared 06/04/2002 C Analyzed 06/04/2002 Our Lab LD AE116221 AE116221 AE116222 Client Sample 1 D Core #5 Core #6	Project Name Car	nyon Lake Co	oring Proj	lect		22101	_	06/04/2002	HDR
Client Sample I D Core #5 Core #6 Date Sampled 06/01/2002 06/01/2002 06/01/2002 Date Prepared 06/04/2002 06/04/2002 06/04/2002 Preparation Method 3050B 3050B 3050B Date Analyzed 06/04/2002 06/04/2002 06/04/2002 Matrix Soil Soil Soil Units mg/Kg mg/Kg 3050B 3050B Dilution Factor 1 1 1 3050B 3050B Antimony 5<0					d 06/04/2002	QC Analyzed 0			
Date Sampled 06/01/2002 05/01/2002 Date Prepared 06/04/2002 06/04/2002 Preparation Method S0508 S0508 Date Analyzed 06/04/2002 06/04/2002 Matrix Soil Soil Units mg/Kg mg/Kg Dilution Factor 1 1 Analyzed 06/04/2002 06/04/2002 Matrix Soil Soil Units mg/Kg mg/Kg Dilution Factor 1 1 Anamony 5.0 10.0 ND Arsenic 5.0 10.0 ND Barium 2.5 5.0 123 112 Beryllium 1.3 2.5 ND ND Cadmum 1.3 2.5 ND ND Chomium 2.5 5.0 6.4 6.7 9.4 Cobalt 2.5 5.0 12.7 20.3			· · · · · · · · · · · · · · · · · · ·			AE116222		, , , , , ,	
Date Prepared 06/04/2002 06/04/2002 Preparation Method 30508 30508 30508 Date Analyzed 06/04/2002 06/04/2002	Client Sample I D				1				
Date Analyzed 3050B 3050B 3050B Date Analyzed 06/04/2002 06/04/2002 06/04/2002 Matrix Soil Soil 1 Units mg/Kg mg/Kg 1 Dilution Factor 1 1 1 Analytes MDL POL Results Results Antimony 5.0 10.0 ND ND 1 Arsenic 5.0 10.0 ND MD 1 Barium 2.5 5.0 123 112 1 Barium 2.5 5.0 123 112 1 Berylhum 1.3 2.5 ND ND 1 Cadmum 1.3 2.5 ND ND 1 Cadmum 2.5 5.0 8.4 24.6 1 Cobalt 2.5 5.0 4.6T 9.4 1 Cobalt 2.5 5.0 4.6T 9.4 1 Cobalt 2.5 5.0 12.7 20.3 1 1									
Notice 06/04/2002 06/04/2002 06/04/2002 Marix Soil Soil Soil Soil Units mg/Kg mg/Kg mg/Kg mg/Kg Diluton Factor 1 1 1 mg/Kg mg/Kg Antimony 5.0 10.0 ND ND MD MD Arsenic 5.0 10.0 ND ND MD MD MD Barium 2.5 5.0 123 112 Image: Soil Soil Soil Soil Soil Soil Soil Soil									
Solid Solid <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>									
Units mg/Kg mg/Kg mg/Kg mg/Kg Dilution Factor 1 1 1 1 1 Nnalytös MDL POL Results Results Results Results Antimony 5 0 10 0 ND ND ND ND Arsenic 5 0 10 0 ND									
Dilution Factor 1 1 1 Nnalytes MDL POL Results Results Antimony 50 100 ND ND Arsenic 50 100 ND ND Barium 25 50 123 112 Barium 25 50 123 112 Barium 1 3 2.5 ND ND Cadmum 1.3 2.5 ND ND ND Cadmum 1.3 2.5 ND ND ND Chromium 2.5 5.0 8.4 24.8 Cobal Cobalt 2.5 5.0 8.4 24.8 Cobal Coper 2.5 5.0 4.67 9.4 Cobal Cobal Coper 2.5 5.0 4.67 9.4 Cobal Coper 2.5 5.0 4.67 6.0 MD MD MD MD MD MD MD MD MD <td></td> <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td></td> <td></td> <td></td> <td></td>				· · · · · · · · · · · · · · · · · · ·					
Analytes MDL PQL Results Results Antimony 50 100 ND ND ND Arsenic 50 100 ND ND ND Barium 25 50 123 112 Beryllum 13 25 ND ND Cadmum 13 2.5 ND ND Chromium 25 5.0 8.4 24.8 Cobalt 25 5.0 8.4 24.8 Copper 25 5.0 4.67 9.4 Lead 25 5.0 4.87 6.0 Molybdenum 2.5 5.0 800 ND Nickel 2.5 5.0 6.3 7.9 S					mg/Kg	mg/Kg	···· · · · · · · · · · · · · · · · · ·		
Antimony 5 0 10 0 ND ND ND Arsenic 5 0 10 0 ND ND ND ND Barium 2 5 5 0 123 112 Image: Constraint of the state of the st					1	1			L
Arsenic 50 100 ND ND ND ND Barium 25 50 123 112 Image: Constraint of the state of the s	hanness the second second second second	۰۲۵ مراجع میں	معيصياتهم جارجا				Mala		
Name 2 5 5 0 123 112 Barium 1 3 2 5 ND ND	Antimony								
Beryllum 1 3 2 5 ND ND ND Cadmum 1 3 2 5 ND ND ND ND Chromium 2 5 5.0 8 4 24.8 Amage of the state of the sta	Arsenic		I			1 1			
Cadmum 1 3 2.5 ND ND Image: Cadmum Cadmum 2 5 5.0 8 4 24.8 Image: Cadmum Chromium 2 5 5.0 8 4 24.8 Image: Cadmum Cobalt 2 5 6 0 4 6.1 9 4 Image: Cadmum Image: Cadmum Cobalt 2 5 5 0 12 7 20 3 Image: Cadmum	Barium				123	112			
Chromium 2 5 5.0 8 4 24.8	Beryllium		13	25	ND	ND			
Cobain 2 5 6 0 4 6J 9 4 Image: constraint of the state of the stat	Cadmium			2.5	ND	ND			
Copper 2 5 5 0 12 7 20 3	Chromium		25	5.0	84	24.8			
Lead 2 5 3 0 4 87 6 0 Mercury (By EPA 7471) 0 1 0 2 ND ND Molybdenum 2 5 5 0 ND ND Nickel 2 5 5 0 6 3 7 9 Selenium 5 0 10 0 ND ND Silver 2 5 5 0 ND ND Thallium 5 0 10 0 ND ND Vanadium 2 5 5 0 40 3 63 0	Cobalt		25	50	4 6J	94			
Mercury (By EPA 7471) 0 1 0 2 ND ND Molybdenum 2 5 5 0 ND ND Nickel 2 5 5 0 6 3 7 9 Selenium 5 0 10 0 ND ND Silver 2 5 5 0 ND ND Thallium 5 0 10 0 ND ND Vanadium 2 5 5 0 40 3 63 0	Copper		25	50	12 7	20 3	•		
Molybdenum 2 5 5 0 NCO ND Image: Constraint of the state of the st	Lead		25	50	4 87	60			
Molybdenum 2 5 5 0 NCO ND Image: Constraint of the state of the st	Mercury (By EPA 7471)		01	02	ND	STD			
Selenium 5 0 10 0 ND ND Silver 2 5 5 0 ND ND ND Thallium 5 0 10 0 ND ND ND Vanadium 2 5 5 0 40 3 63 0 10			2 5	50	202	ND			
Selection 2 S 5 O ND ND Silver 2 S 5 O ND ND ND Thallium 5 O 10 O ND ND ND Vanadium 2 S 5 O 40 S 63 O Image: Control of the selection of the select	Nickel		25	50	63	79			
Shire So 10.0 ND ND Thallium 5.0 10.0 ND ND ND Vanadium 2.5 5.0 40.3 63.0 10.0 10.0	Selenium		50	10 0	ND	ND			
Vanadium 2 5 5 0 40 3 63 0	Silver		25	50	לוא	CIA			
V CHARLES IN	Thallium		50	10 0	ND	NTO			
Zinc 25 50 281 410	Vanadium		25	50	40 3	63 0			
	Zinc		25	50	28 1	41 0			

2834 North Naomi Street Burbank CA 91504 • DOHS NO 1541, LACSD NO 10181 Tel (888) 288 AETL • (818) 845-8200 • Fax (818) 845-8840 • www aetlab com

ANALYTICAL RESULTS

Ordered By

F

HDR' Engine	ering. : I	n G	الالال المراجعة المرا مراجعة المراجعة المرا مراجعة المراجعة المرا	
9444 Parnh	am Stree			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Surte-300 San ^r Dieżo,				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
San Diéão	* \p>_ P fi + k		<u>, 14 *** + + + + + + + + + + + + + + + + + </u>	*

Telebuoue: (9:	20)/174-0999
Atta: Je	ef Thornbury
Page	A
Project ID	CANYON LAKE
Project Name ·	Canyon Lake Coring Project

AETL Job Number	Submitted	Client
22101	06/04/2002	HDR

Analytes			Phosphorus (total)		***	1.4.14	
Methods	of Analyses		(365.2)				
Date Pre	pared		08/05/2002				
Date Ana	lyzed		06/05/2002				
Matrix			Soil				
QC Batch	Number		06052002 / 06052002				
Units			mg/Kg				
	etection Limi		10				
Practica	1 Quantitatic	n Limit	10				
Dilucion	Pactor		1				
Lab ID	Sample ID	Sampled	Results	r - r		-	
AE116217	Core #1	06/01/2002	ND				
AE116218	Core #2	06/01/2002	ND				
AE116219	Core #3	08/01/2002	ND				
AE116220	Core #4	06/01/2002	ND				
AE116221	Core #5	06/01/2002	ND				
AE116222	Core #6	06/01/2002	DIA				
N/A	Method Blank	06/01/2002	ND				

2834 North Naomi Street Burbank, CA 91504 • DOHS NO 1541 LACSD NO 10181 Tel (888) 288 AETL • (818) 845-8200 • Fax (818) 845-8840 • www aetlab com

ANALYTICAL RESULTS

Ordered	By

HDR Engineering, Ing 9444 Farnham Street Suite 500 San Diego, CA 92123-	
Telephone (858)712-833	5

Attn Jeff Thornbury

PageSProject IDCANYON LAKEProject NameCanyon Lake Coring Project

AETL Job 'Number	Submitted	Client
22101	06/04/2002	HDR

Method (365 2), Phosphorus (total), Colonmetric

OUALITY CONTROL REPORT

QC Batch No 06052002 QC Prepared 06/05/2002 QC Analyzed 06/05/2002

· · · · · · · · · · · · · · · · · · ·	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit	
Phosphorus (101al)	0 20	0 19	97	0 20	0 19	94	31	80-120	<20	

QC Batch No 06052002 QC Prepared 06/05/2002 QC Analyzed 06/05/2002

	SM	SM DUP	RPD	SM RPD	LCS	LCS	LCS	LCS/LCSD	
Analytes	Result	Result	%	% Limit	Concen	Recov	% REC	% Limit	
Phosphonus (total)	ND	ND	<1	<20	0 20	0 20	100	80-120	

2834 North Naomi Street Burbank, CA 91504 · DOHS NO 1541, LACSD NO 10181 Tel (888) 288-AETL · (818) 845-8200 · Fax (818) 845-8840 · www aetlab com

ANALYTICAL RESULTS

Ordered 2	By	_
HDR Enginee	nng, Ino	
9444 Famhan	Street	ł
Suite 300	, [–]	
San Diego, C.	A ¹ 92123-	
	858)712-8335 off Thornbury	
Page	б	
Project ID	CANYON LAKE	
Project Name	Canyon Lake Cori	ing Project

AETL Job 1	Number	Submitted	Client
2210	1	06/04/2002	HDR

Method (6010/7000CAM), CAM Title 22 Metals (SW-846) <u>QUALITY CONTROL REPORT</u>

QC Batch No 06042002-1 QC Prepared 06/04/2002 QC Analyzed 05/04/2002

· · ·	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Anumony	1 00	1 01	101	1 00	1 04	104	29	80-120	<15
Arsenic	1 00	0 99	99	1 00	0 98	98	10	80-120	<15
Barium	1 00	0 91	91	1 00	0 97	97	64	80-120	<15
Beryllium	1 00	0 94	94	1 00	0 97	97	3.1	80-120	<15
Cadmum	1 00	0 93	93	1 00	0 95	95	21	80-120	<15
Chromium	1 00	0 93	93	1 00	0 96	96	32	80-120	<15
Cobait	1 00	0 94	94	1 00	0 96	96	21	80-120	<15
Соррег	1 00	0 95	95	1 00	0 97	97	21	00-120	<15
Lead	1 00	0 90	90	1 00	0 93	93	33	80-120	<15
Mercury (By EPA 7471)	0 01	0 01	100	0 01	0 01	102	20	80-120	<15
Molybdenum	1 00	0 95	95	1 00	0 98	98	31	80-120	<15
Nickel	1 00	0 93	93	2 00	0 95	95	21	80-120	<15
Selenium	1 00	0 97	97	1 00	0 99	99	20	80-120	<15
Silver	1 00	0.95	95	1 00	0 96	96	10	80-120	<15
Thallium	1 00	0 99	99	1 00	0 97	97	20	80-120	<15
Vanadium	1 00	0 94	94	1 00	0 97	97	31	80-120	<15
Zinc	1 00	0 94	94	1 00	0 96	96	21	80-120	<15

QC Batch No 06042002-1 QC Prepared 06/04/2002 QC Analyzed 06/04/2002

4	LCS	LCS	LCS	LCS/LCSD		
Analytes	Concen	Recov	% REC	% Limit		ļ
Antimony	1 00	0 91	91	80-120	 	
Arsenic	1 00	0 99	99	80-120		
Banum	1 00	0 94	94	80-120	 	
Beryllium	1 00	0 93	93	80-120		
Cadmium	1 00	0 98	98	80-120	 	
Chromium	1 00	0 95	95	80-120		
Cobalt	1 00	0 98	98	80-120		
Copper	1 00	0 97	97	80-120	 1 1	
Lead	1 00	0 95	95	80~120		

z

5

Į

American Environmental Testing Laboratory Inc

2834 North Naomi Street Burbank, CA 91504 • DOHS NO 1541, LACSD NO 10181 Tel (888) 288-AETL • (818) 845-8200 • Fax (818) 845-8840 • www aetlab com

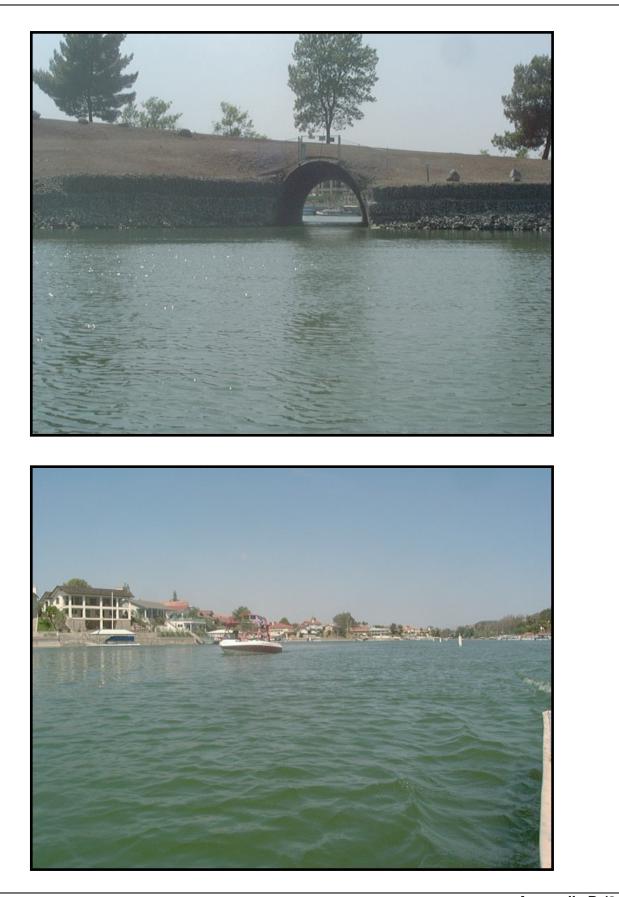
ANALYTICAL RESULTS

Page	7		
Project ID	CANYON LAKE	APTL Job Number	Submittid Client
Project Name	Canyon Lake Coring Project	22101	06/04/2002 HDR

Method (6010/7000CAM), CAM Title 22 Metals (SW-846)

QC Batch No 06042002-1 QC Prepared 06/04/2002 QC Analyzed 06/04/2002

	LC8	LCS	LCS	LCS/LCSD		
Analytes	Concen	Recov	% REC	% Limit		
Mercury (By EPA 7471)	0 01	0 01	99	80-120	 	
Molybdenum	1 00	0 94	94	80-120		
Nickel	1 00	0 97	97	80-120		
Selenium	1 00	0 98	98	80-120		
Silver	1 00	0,95	95	80-120		
Thallium	1 00	0 99	99	80-120		
Venadium	1 00	0 96	96	80-120		t
Zinc	1 00	0 97	97	80-120		 1


APPENDIX D

SITE PHOTOGRAPHY

Appendix D (1 of 2) Site Photographs Canyon Lake East Bay Sediment Characterization Lake Elsinore and San Jacinto Watersheds Authority

Appendix D (2 of 2) Site Photographs Canyon Lake East Bay Sediment Characterization Lake Elsinore and San Jacinto Watersheds Authority